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Abstract. This paper presents an evolutionary coding method that maps geno-
type to phenotype in a genetic algorithm. Unlike traditional genetic algorithms,
the proposed algorithm involves mating and reproduction of cells that have
multiple chromosomes instead of single chromosomes. The algorithm also
evolves the mapping from genotype to phenotype rather than using a fixed
mapping that is associated with one particular encoding method. The genotype-
to-phenotype mapping is conjectured to explicitly capture important schema
information. Some empirical results are presented to demonstrate the efficacy of
the algorithm with some GA-Hard problems.

1   Background

Genetic Algorithms (GAs) are a class of powerful algorithms for solving optimization
problems using evolution as a search strategy. Although GAs can successfully solve
many difficult optimization problems, some problems are still hard for GAs to solve
and such problems are called GA-Hard problems. Particularly, there is a class of
problems called deceptive problems that exploit the weaknesses in the encodings of
chromosomes [1], [2]. This paper purposes a GA based method to solve GA-Hard
problems by evolving a genotype-to-phenotype mapping that also capture schema
information.

Let’s understand how an optimization problem can be deceptive by understanding
basic schema theory, which attempts to explain the ability of GAs to perform global
search in a large and usually high dimensional problem space [3]. The theory hypothe-
sizes the existence of building blocks that are called schemata in the chromosomes. A
schema is a chromosome pattern that consists of three symbols, 0, 1, and *, where 0
and 1 are the fixed defining bits and the symbol * is a wildcard symbol that matches a
0 or 1. While an 8-bit binary chromosome 10010011 presents a single point in the
solution space, the schema 10*1***1 represents a hyper-plane in the solution space
that consists of 16 data points because each * symbol could be a 0 or 1. A schema is
said to sample its hyper-plane because as it survives from generation to generation,
data points in its hyper-plane are tested repeatedly to be as good solutions in the solu-
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tion space. Through genetic recombination, mutation, and selection, promising hyper-
planes in the solution space are given higher sampling rates by an exponential increase
in quantities of the schemata in the chromosome population.

A binary chromosome may consist of chunks of binary sequences each of which is
called a gene that corresponds to a parameter of the optimization function. Usually, a
particular binary number encoding scheme is chosen to translate such a binary se-
quence into a numeric value for the parameter. For example, 00001111 can be trans-
lated to 15 (decimal) using two’s complement coding method. The binary chromo-
some represents the genotype whereas the decoded parameter list represents the phe-
notype. Note that a parameter may not be storing numeric information; it could also
represent structural information of a phenotype, e.g., architectural information of a
neural network.

1.1   Binary Encoding Methods

This paper focuses on binary encodings where a parameter in the phenotype is en-
coded as a binary number. The simplest encoding method is the traditional two’s
complement binary encoding method. Unfortunately, such an encoding method may
cause discontinuity in the search process because a single step in the phenotypic space
from, say, 15 to 16, would require 5 steps in the genotypic space from 00001111 to
00010000. In this example, the Hamming distance between 00001111 and 00010000
is 5. There were many attempts to use alternative encoding methods such as Gray
coding to alleviate this problem [4], [5]. The encoding and decoding steps of Gray
code are detailed in [6]. The significance of Gray code is that consecutive binary
numbers differ by only one digit, that is, the Hamming distance between two consecu-
tive numbers is one. For example, numbers 0 to 8 in Gray code are as follows: 0000,
0001, 0011, 0110, 0111, 0101, 0100. However, even with Gray coding, a problem
space can still be difficult for GAs to search in.

1.2   Deceptive Problems

Some of the problems that are hard for GAs are called deceptive problems. Before
defining what a deceptive problem is, we need to understand what kind of schemata
could lead to deception. Detailed discussions of deception problems can be found in
[1], [2], [7]. A schema’s fitness depends on the fitness values of its sampling points.
For instance, the schema 10*1***1 would probably have a high fitness value if most
(if not all) of the 16 data points carry high fitness values. Schemata with high fitness
values have a higher chance to survive into the next generation. A schema with N
defining bits is called an order-N schema. For example, the schemata *0**0, *0**1,
*1**0, and *1**1 are all order-2 schemata. Moreover, schemata that are of the same
order and have defining bits at the same locations are essentially primary competitors
in the selection process because such schemata compete as orthogonal planes in the
hyperspace. A lower order hyper-plane also contains a collection of higher order hy-
per-planes that share common defining bits with the lower order hyper-plane. For
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example, the order-2 hyper-plane 0***0 contains some order-3 hyper-planes such as
00**0 and 01**0 whereas 1***0 contains another set of order-3 hyper-planes such as
10**0 and 11**0. An order-N schema and the order-K schemata (N<K) that it con-
tains are said to be relevant to one another. When the lower order schema competes in
a selection process, all of its own relevant higher order schemata also participate in the
competition. For example, the competition between the order-2 schemata 0***0,
0***1, 1***0, and 1***1 also involves the competitions between the order-3 schemata
00**0, 01**0, 00**1, 01**1, 10**0, 11**0, 10**1, and 11**1. On the other hand, the
competitions between higher hyper-planes also involve competition of their relevant
lower order hyper-planes.

A deception occurs when a hyper-plane competition of higher order K leads to a
global winner that is radically different, in terms of Hamming distance, from the
global winner of the competitions among the relevant order-N hyper-planes, where
N<K. For example, consider the fitness values for the following deceptive function f1:

Table 1. A Deceptive Function f1

Function f1 Values
f1(000) = 28 f1(001) = 26
f1(010) = 22 f1(100) = 14
f1(110) = 0 f1(011) = 0
f1(101) = 0 f1(111) = 30

With function f1, the global winner of an order-3 hyper-plane competition is 111.
Consider 111's relevant hyper-plane *11, when it competes with *00, *01, and *10 in
order-2 competitions, the average fitness of *11 is 15 ((0+30)/2) versus the average
fitness values of *00, *01, and *10 are 21, 13, and 11, respectively. The schemata *00
will most likely win the order-2 hyper-plane competition. The radical difference, or
long Hamming distance, between the two global winners 111 and *00 creates decep-
tion. We are now ready to define a deception problem:

A deceptive problem is any problem of a specific order K that involves deception in
one or more relevant lower order N hyper-plane competitions where N<K.

A deceptive problem misleads a GA to converge incorrectly to a region in the
problem space called the deceptive attractor.

2   Previous Work on Solving Deceptive Problems

Different techniques have been proposed to tackle deceptive problems. Some tech-
niques focus on the encoding methods. According to the work in [1],[8], a tagged bit
that specifies the phenotypic bit location is attached to each binary bit in the chromo-
some. A binary string 11011001 is represented as a list of order pairs of bit value-bit
location: ((1 1) (2 1) (3 0) (4 1) (5 1) (6 0) (7 0) (8 1)). The order of the ordered pairs
may be rearranged or randomized but bits on two chromosomes are first lined up in
the same order before a crossover operation. However, these approaches involve an
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additional search space for finding the right permutation of the bit ordering that is as
large as the original function optimization space. In addition, one of the bit orderings
of the parents is randomly chosen as the ordering of the siblings. As suggested in a
related work [12], gene positions, instead of bit positions, could also be rearranged to
preserve building blocks.

In [9], a 2-level GA is proposed. Each low level gene in the chromosome is tagged
with a high level control gene that turns the gene on or off. This 2-level GA approach
is very similar to a redundant gene approach in [10] where multiple genotypic bits
would vote to turn on or off a phenotypic bit. In [1], [11], multiple populations were
maintained and migration was allowed among different sub-populations. The primary
goal was to maintain diversity. So long as at least one subpopulation does not con-
verge to the deceptive attractor, there is still a chance that the global optimum can be
found.

3   An Evolutionary Mapping Method

The proposed method in this paper is based on a single population GA model although
it could be extended easily to use multiple populations. A population of cells instead
of chromosomes is maintained. Each cell has two chromosomes, a binary data chro-
mosome that stores the genotype for the optimization function and a value-coded
mapping chromosome that stores bit locations as integers. For example, an initial cell
may have two chromosomes as follow:

1 1 0 1 1 1 0 0

The chromosome to the left is the data chromosome that stores genotypic bits while
the mapping chromosome on the right hand side defines the mapping from a genotype
to a phenotype. For example, the above mapping chromosome maps the genotype to a
phenotype that is exactly the same as the genotype itself. However, a different map-
ping chromosome (7,6,0,1,2,3,4,5) will map the above data chromosome to a pheno-
type (0,0,1,1,0,1,1,1), which may be a parameter of an optimization function. In the
evolution process, the data chromosomes and mapping chromosomes undergo sepa-
rate genetic operations with their counter parts in the other cells. The mapping chro-
mosomes also go through additional permutation operations to alter the bit ordering.
While the genetic operations for the data chromosomes are traditional 2-point cross-
over and mutation, different implementations of the genetic operations for the map-
ping chromosomes may result in significantly different outcomes. If the bit ordering
on the mapping chromosome is constantly maintained as a permutation of the bit loca-
tions, then the approach will be very similar to the tagged bit approach as in Genitor
[1] and Goldberg’s work [8]. However, this permutation method by itself is shown not
to be very effective against deceptive problems.

This paper suggests a decoupling of the genotype from the mapping process by al-
lowing the mapping chromosomes to cross and mutate freely using integer genetic
operators without maintaining a one-to-one mapping between a genotypic bit and a
phenotypic bit.

0 1 2 3 4 5 6 7
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3.1   Genetic Operators

As mentioned earlier, the data chromosomes undergo the traditional 2-point crossover
and mutation operations. On the other hand, the permutation operator rearranges bits
on the mapping chromosomes by swapping and shifting bits. The crossover operator
for the mapping chromosomes is a traditional 2-point integer crossover operator. The
mutation operator is an integer mutation operator that randomly switches a gene to one
of the bit locations. In addition, a gene replacement operation is also included in the
mutation process. Through this gene replacement operation, a gene on the mapping
chromosome can be copied to another gene. The whole genetic operation process will
break the one-to-one mapping between a genotypic bit and a phenotypic bit. A geno-
typic bit on the data chromosome may be mapped to more then one bit on the pheno-
type. For example, given a data chromosome (1,0,0,1,1,1,0,0) and a mapping chromo-
some (1,4,0,1,2,7,4,5), a phenotype (0,1,1,0,0,0,1,1) can be constructed. Bit locations
3 and 6 on the data chromosomes are actually not used.

The rationales of this approach are: First, this approach will force the data chromo-
somes to concentrate on exploring and surviving in the genotypic space where geno-
mic materials constantly undergo construction and destruction of schemata. The map-
ping chromosomes on the other hand, will concentrate on the effort of obtaining an
optimal mapping between a genotype and a phenotype. Second, with cells of multiple
chromosomes, different mappings can evolve at the same time because each mapping
is associated with a particular genotype. On the contrary, some previous approaches
evolved only one mapping for the entire population. Third, perhaps the most important
reason is that the introduction of non-one-to-one mapping creates the possibility of
capturing useful schemata as described below.

3.2   Capturing Schemata

Suppose an order N schema consists of r 0 bits and s 1 bits. The 0-bits together form a
subschema of order r called 0-subschema whereas the 1-bits form a subschema of
order s called 1-subschema. For example, the schema 1*0*1*0*1 consists of an order-
3 1-subschema 1***1***1 and an order-2 0-subschema **0***0**. As the defining
bits of a subschema emerge during evolution, the system will try to maintain the same
bit values at those locations.

Because the mapping chromosomes are allowed to evolve freely to form non-one-
to-one mapping between a genotype and a phenotype, the selection pressure should
map one defining bit location to another defining bit location in the same subschema.
The result is an explicit formation of a schema. For example, the phenotypic sub-
schema 1***1***1 can still be reconstructed from the genotypic pattern 1***0***0 if
the mapping chromosome is (0,1,2,3,0,5,6,0).

Once a subschema is explicit formed, the change of one genotypic bit may trigger
the changes of multiple defining bits on the phenotype. The ability to alter multiple bit
values greatly shortens the Hamming distance between two distant hyper-planes in the
solution space. For example, the distance between 1***1***1 and 0***0***0 can be
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reduced to one. Hence the search may be able to get away from a deceptive attractor
or go toward a global optimum much faster. In deceptive problems, the global opti-
mum is frequently the complement of the deceptive attractor. Therefore, the explicit
formation of 1-subschema or 0-schschema may help the search to jump from a decep-
tive attractor straight to the global optimum.

The schema theory proposed that schemata of higher order and with longer length
are less likely to survive because they are more likely to be destroyed by genetic op-
erators [3]. On the contrary, as shown in the above section, the higher the order of
subschema, the greater in reduction of Hamming distance between two distant hyper-
planes.

4   Experiments

Two sets of experiments were setup to test the dynamic mapping approach. The first
set of experiments is primarily based on the deceptive functions constructed in [1]
while the second set is based on functions used in [14], [15].

4.1   First Set of Experiments

The first step in these experiments was to construct some deceptive functions. First,
the following algorithm from [1] was applied to construct an order-4 deceptive func-
tion:

Step 1: Select a global optimum pattern.
Step 2: Sort all binary patterns by their Hamming distance to the optimum pattern.
            The group of patterns that have the same distances can be placed in any
            order within the same group
Step 3: The first pattern is pattern 1, the optimum pattern and the last pattern N
            will be the deceptive attractor. Assign fitness values according to:
            fitness(pattern X) = fitness(pattern X−1) + C
            where C is a constant and fitness(pattern 2) is another constant, say, 0.

Using the above algorithms, two deceptive functions f2 and f3 were defined as
shown in Table 2. The function f2 was directly obtained from [1] while the function f3
was newly constructed using the above algorithm. Note that the optimum of f3 1001
has equal numbers of 1 and 0.

Next, an “ugly” 40-bit function could be constructed based on the discussion in [1]
by spreading the four bits of the parameter of function f2 to the chromosome bit loca-
tions 0, i+10, i+20, i+40, respectively, for 10 times where 0 ≤ i ≤ 9. For instance,
based on the parameter 0101, the function value of

ugly( 0000000000 1111111111 0000000000 1111111111 )
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is 16. Similarly, another “bad” 40-bit function could be constructed using f3. In the
experiments, the 40-bit ugly and bad functions were also extended to 60-bit by re-
peating the spreading the four parameter bits 15 times.

Table 2. Deceptive Functions f2 and f3

f2 f3

f2(1111) 30 f2(0110) 14 f3(1001) 30 f3(0101) 14
f2(0111) 0 f2(0101) 16 f3(1011) 0 f3(0011) 16
f2(1011) 2 f2(0011) 18 f3(1101) 2 f3(0000) 18
f2(1101) 4 f2(1000) 20 f3(1000) 4 f3(0111) 20
f2(1110) 6 f2(0100) 22 f3(0001) 6 f3(1110) 22
f2(1100) 8 f2(0010) 24 f3(1111) 8 f3(0100) 24
f2(1010) 10 f2(0001) 26 f3(1100) 10 f3(0010) 26
f2(1001) 12 f2(0000) 28 f3(1010) 12 f3(0110) 28

Two additional algorithms were also included for comparison. The first one was
simply a regular GA without any special operators. The second algorithm was similar
to the tagged bit approach in which the one-to-one genotype-phenotype mapping was
maintained. In all experiments, for the data chromosomes, the crossover rate was set
to 0.6 and mutation rate was set to 1/(length of chromosome). For the mapping chro-
mosome, the crossover rate was 0.6 and the mutation was set to 0.005, which was
about 1/5 of the mutation rate for the data chromosome. The permutation rate was
0.025. Several tests were set up to test the algorithms using the 40-bit ugly function,
60-bit ugly function, 40-bit bad function, and 60-bit bad function. The results are
obtained summarized in Table 3.

Table 3. Experimental Results using the ugly and bad Functions

Traditional GA Tagged Bits Dynamic Mapping

Percentage of
Optimal Runs

Avg.
Gen.

Percentage of
Optimal Runs

Avg.
Gen.

Percentage of
Optimal Runs

Avg.
Gen.

ugly
40
bits

0% n/a 0% n/a 100% 1387

ugly
60
bits

0% n/a 0% n/a 100% 2471

bad
40
bits

0% n/a 0% n/a 100% 4240

bad
60
bits

0% n/a 0% n/a 80% 8931

Each result is based on 5 independent runs. The dynamic mapping approach pro-
posed in this paper successfully found the global optimum in all of the ugly function
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tests and the 40-bit bad function tests and it found the global optimum of the 60-bit
bad function 80% of the time. The average numbers of generations for the dynamic
mapping approach to reach the optimum were listed in the last column. The averages
were calculated for successful runs only. The search missed the optimum two times
out of ten runs. In addition, the time to find the optimum almost doubled when the size
of the problem was increased by 50% from 40 bits to 60 bits. The other two ap-
proaches got stuck in the deceptive attractors and never found the optima. The failures
of the other approaches simply verify how deceiving the functions were for traditional
GAs.

4.2   Second Set of Experiments

The second set of experiment is based on the some of the most difficult GA-Hard
problems listed in [14], [15] although other difficult functions were first proposed in
[13]. The chosen functions are listed in Table 4 and they are considered GA-Hard
because the search spaces are multimodal with large number of local optima. The
Rastrigin’s function is particularly difficult to optimize because it contains millions of
local optima in the interval of consideration. Many search method failed to converge
to the global optimum at xi = 0. The Schwelfel’s function has a global optimum at xi =
420.9687. In implementation, the Schwefel’s function was modified as
418.9828872721624−f7 to avoid negative fitness values. The optima of these optimi-
zation functions are indeed needles in haystacks.

Table 4. Additional Optimization Functions

Name Function Interval
Rastrigin’s

∑ +−=
20

1

2
6 ]10)2cos(10[)( ii xxxf π

12.512.5 ≤≤− ix

Schwefel’s
∑−=
10

1
7 )sin()( ii xxxf

500500 ≤≤− ix

The experiments were set up to compare the dynamic mapping approach and the
traditional GA approach. Because both approaches had problems to converge to an
exact optimal point in the solution space, additional local hill climbing was incorpo-
rated to help the algorithms to perform local search to zoom into the optimum. Note
that the optimization functions are defined in the real number domain with infinite
precision. Therefore, if x* is the optimum point in the solution space and x is the cur-
rent search point, the search will stop as soon as |f(x) – f(x*)| < ε, where ε is a small
comparison threshold. In the experiments, the threshold ε was set to 10−16. However,
using this small threshold, the Rastrigin's problem was not 100% solved. The tradi-
tional GA kept wondering in vicinity of the exact optimal point while the dynamic
mapping algorithm keeps converging to the optimal point at an ever decreasing rate.

The results of the experiments are summarized below in Table 5. Each of the re-
sults is based on data averaged over 5 separate runs. The maximum number of evolu-
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tions for the experiments was set to 10,000 and 20,000 generations for Schwefel's
function and Rastrigin's function, respectively. For the Schwefel's function, both ap-
proaches found the optimum. The fitness values were in the order of 10−17 when the
evolution was stopped. Again, the dynamic mapping approach performed better than
the traditional version. The Rastrigin's function is the hardest among all the functions
presented here. If the comparison threshold ε is set to 10−16, no trial runs were consid-
ered successful in finding an optimum. However, if the threshold ε is lowered to 10−6,
40% of the dynamic mapping algorithm found solutions that are close enough to the
optimum. The traditional GA did not find any optimum even with the lowered thresh-
old.

Table 5. Experimental Results using some GA-Hard Functions

Traditional GA Dynamic Mapping
Percentage
of Optimal
Runs

Avg. Gen. Percentage of
Optimal Runs

Avg. Gen.

Schwefel’s 100% 2231 100% 1198
Rastrigin’s 0% / 0% n/a 0% / 40% n/a / 15826
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Fig. 1. Fitness Values of the All-Time-Best Cells

The fitness values from the all-time-best cell were averaged and plotted in Figure 1.
The traditional GA converged very quickly in the beginning and at times produced
better solutions earlier than the dynamic mapping approach; however, it got stuck in
some local optima. The search by the dynamic mapping approach continued until the
cut-off point at 20,000 generations. Since we did not use any elitist approach in any
experiment, the all-time-best cells were not reintroduced into the populations. How-
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ever, the current best cells in each generation also behaved similarly as shown in Fig-
ure 2.
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Fig. 2. Fitness Values of the Current Best Chromosomes

4.3   Population Diversity

The final populations of the above experiments were also examined. The following
figures, Figures 3 to 5, are population dumps for the 40-bit ugly experiments. The
populations are shown as matrices with 256 columns and 40 rows. A column in a
matrix is a 40-bit chromosome and there are 256 chromosomes in a population. A 0-
bit is shown as a black dot whereas a 1-bit is shown as a white dot.

Fig. 3. A Phenotypic Population of the Dynamic Mapping Approach

Figure 3 shows the final phenotypic population for an experiment of the dynamic
mapping approach. A perfect solution with all 1's resides near the far right. The rest of
the population consists of many local optimal solutions with all 0's since they were
attracted to the deceptive local optima.

The corresponding genotypic population as shown in Figure 4 is quite different
from the phenotypic population. There are many different individuals and the diversity
in the genotypic population prevents the population from converging prematurely.
However, some bit locations do consist of predominantly the same bit values across
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almost the whole population and such locations may be locations of defining bits of
some schemata.

As a comparison, a final genotypic population from the control experiment is
shown in Figure 5. Since the control experiments used a canonical GA that got stuck
in the deceptive local optima, the population is much less diverse than its counter part
from the dynamic mapping experiments.

Fig. 4. A Genotypic Population of the Dynamic Mapping Approach

Fig. 5. A Genotypic Population of the Control Experiment

5   Conclusions

The proposed algorithm is every effective in solving some of the deception problems.
It is also rather effective in solving some of the GA-Hard problems listed in [14], [15].
The dynamic mapping genetic algorithm is a novel approach that utilizes multiple
chromosomes in a single cell for mating with another cell within a single population.
The mapping from genotype-to-phenotype is explicitly evolved and maintained. De-
fining bits of 0-subschema and 1-subschema are supposed to be explicitly captured
and stored in the mapping chromosomes. The direct accessibility to such subschema
allows fast navigation to complementary hyper-planes and the Hamming distance
between two such hyper-planes is greatly shortened to one. As a comparison, the Dual
Genetic Algorithm approach in [16], [17], a meta-gene is used to flip gene values to
their complements and hence reducing the number of steps needed to transform a
chromosome to its genetic opposite.

Although this initial study has shown good potential in solving some GA-Hard
problems, more study is needed to better understand and analyze the inner working of
the algorithm. The 0/1-subschemata are also limited because they consist of defining
bits of the same values. More research is needed to define a structure to capture the
whole schema effectively.
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